Search results
Results From The WOW.Com Content Network
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)" , or the Eightfold Way , the successful classification scheme organizing the large number of lighter hadrons that ...
Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.
The stop squark is a key ingredient of a wide range of SUSY models that address the hierarchy problem of the Standard Model (SM) in a natural way. A boson partner to the top quark would stabilize the Higgs boson mass against quadratically divergent quantum corrections, provided its mass is close to the electroweak symmetry breaking energy scale.
In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model. It arises from a coupling of a scalar field to gauge fields.
A theory of quantum gravity is needed in order to reconcile these differences. [16] Whether this theory should be background-independent is an open question. The answer to this question will determine the understanding of what specific role gravitation plays in the fate of the universe.
When considering extensions of the Standard Model, the s-prefix from sparticle is used to form names of superpartners of the Standard Model fermions , [3] e.g. the stop squark. The superpartners of Standard Model bosons have an -ino ( bosinos ) [ 3 ] appended to their name, e.g. gluino , the set of all gauge superpartners are called the gauginos .
Despite being perhaps the most familiar fundamental interaction, gravity is not described by the Standard Model, due to contradictions that arise when combining general relativity, the modern theory of gravity, and quantum mechanics. [54] [55] However, gravity is so weak at microscopic scales, that it is essentially unmeasurable.
This also means it is the first elementary scalar particle discovered in nature. Elementary bosons responsible for the four fundamental forces of nature are called force particles ( gauge bosons ). The strong interaction is mediated by the gluon , the weak interaction is mediated by the W and Z bosons, electromagnetism by the photon, and ...