Search results
Results From The WOW.Com Content Network
Under the measure-theoretic definition of a probability space, the probability of an outcome need not even be defined. In particular, the set of events on which probability is defined may be some σ-algebra on S {\displaystyle S} and not necessarily the full power set .
Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to ...
Classical definition: Initially the probability of an event to occur was defined as the number of cases favorable for the event, over the number of total outcomes possible in an equiprobable sample space: see Classical definition of probability. For example, if the event is "occurrence of an even number when a dice is rolled", the probability ...
A subset of the sample space of a procedure or experiment (i.e. a possible outcome) to which a probability can be assigned. For example, on rolling a die, "getting a three" is an event (with a probability of 1 ⁄ 6 if the die is fair), as is "getting a five or a six" (with a probability of 1 ⁄ 3).
The classical definition of probability works well for situations with only a finite number of equally-likely outcomes. This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A , the probability of ...
For any sample space with equally likely outcomes, each outcome is assigned the probability . [16] However, there are experiments that are not easily described by a sample space of equally likely outcomes—for example, if one were to toss a thumb tack many times and observe whether it landed with its point upward or downward, there is no ...
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...