When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    Three squares of sides R can be cut and rearranged into a dodecagon of circumradius R, yielding a proof without words that its area is 3R 2. A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12.

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;

  4. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...

  5. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  6. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The volume is computed as F times the volume of the pyramid whose base is a regular p-gon and whose height is the inradius r. That is, =. The following table lists the various radii of the Platonic solids together with their surface area and volume.

  7. Icositetragon - Wikipedia

    en.wikipedia.org/wiki/Icositetragon

    As 24 = 2 3 × 3, a regular icositetragon is constructible using an angle trisector. [1] As a truncated dodecagon , it can be constructed by an edge- bisection of a regular dodecagon. Symmetry

  8. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [4] =, =. The rhombic dodecahedron can be viewed as the convex hull of the union of the vertices of a cube and an octahedron where the edges intersect perpendicularly.

  9. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    The 120-cell whose coordinates are given above of long radius √ 8 = 2 √ 2 ≈ 2.828 and edge-length ⁠ 2 / φ 2 ⁠ = 3− √ 5 ≈ 0.764 can be constructed in this manner just outside a 600-cell of long radius φ 2, which is smaller than √ 8 in the same ratio of ≈ 0.926; it is in the golden ratio to the edge length of the 600-cell ...