Search results
Results From The WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Both species A and B will typically be diffusing but diffusiophoresis is distinct from simple diffusion: in simple diffusion a species A moves down a gradient in its own concentration. Diffusioosmosis , also referred to as capillary osmosis, is flow of a solution relative to a fixed wall or pore surface, where the flow is driven by a ...
The rate of diffusion N A is usually expressed as the number of moles diffusing across unit area in unit time. As with the basic equation of heat transfer, this indicates that the rate of force is directly proportional to the driving force, which is the concentration gradient. This basic equation applies to a number of situations.
Diffusion force caused by concentration gradient: = ( (/)). Electrostatic force caused by electric potential gradient: q ∇ φ {\displaystyle q\,\nabla \varphi } . Here R is the gas constant, T is the absolute temperature, n is the concentration, the equilibrium concentration is marked by a superscript "eq", q is the charge and φ is the ...
The exchange of gases occurs as a result of diffusion down a concentration gradient. Gas molecules move from a region in which they are at high concentration to one in which they are at low concentration. Diffusion is a passive process, meaning that no energy is required to power the transport, and it follows Fick's law: [citation needed]
The concentration gradients cause additional diffusion fluxes, which contribute to an increase of the total flux in the solutions and to a decrease of the flux in the membrane. As a result, the system reaches a steady state where J 1 s = J 1 m {\displaystyle J_{1}^{s}=J_{1}^{m}} .
There is a concentration gradient in the balloon wall, because the balloon was initially filled with helium, and thus there is plenty of helium on the inside, but there is relatively little helium on the outside (helium is not a major component of air). The rate of transport is governed by the diffusivity and the concentration gradient.
where is the diffusion coefficient and can be obtained by the Stokes-Einstein equation, and the second term is the gradient of the chemical potential with respect to position. Note that [B] refers to the average concentration of B in the solution, while [B](r) is the "local concentration" of B at position r.