Search results
Results From The WOW.Com Content Network
This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
Online Notes / Differential Equations by Paul Dawkins, Lamar University. Differential Equations, S.O.S. Mathematics. A primer on analytical solution of differential equations from the Holistic Numerical Methods Institute, University of South Florida. Ordinary Differential Equations and Dynamical Systems lecture notes by Gerald Teschl.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
where the f ab are formed from the electromagnetic fields and ; e.g., f 12 = E z /c, f 23 = −B z, or equivalent definitions. This form is a special case of the curvature form on the U(1) principal bundle on which both electromagnetism and general gauge theories may be described.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
The Carlitz derivative is an operation similar to usual differentiation but with the usual context of real or complex numbers changed to local fields of positive characteristic in the form of formal Laurent series with coefficients in some finite field F q (it is known that any local field of positive characteristic is isomorphic to a Laurent ...