When.com Web Search

  1. Ads

    related to: symmetry worksheet grade 4

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]

  3. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  4. Reflection symmetry - Wikipedia

    en.wikipedia.org/wiki/Reflection_symmetry

    In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry

  5. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Therefore, the number of 2-, 3-, 4-, and 6-fold rotocenters per primitive cell is 4, 3, 2, and 1, respectively, again including 4-fold as a special case of 2-fold, etc. 3-fold rotational symmetry at one point and 2-fold at another one (or ditto in 3D with respect to parallel axes) implies rotation group p6, i.e. double translational symmetry ...

  6. Dihedral group of order 8 - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group_of_order_8

    Cycle graph of Dih 4 a is the clockwise rotation and b the horizontal reflection. Cayley graph of Dih 4 A different Cayley graph of Dih 4, generated by the horizontal reflection b and a diagonal reflection c. In mathematics, D 4 (sometimes alternatively denoted by D 8) is the dihedral group of degree 4 and order 8. It is the symmetry group of a ...

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T. All circles are similar. [12]