Search results
Results From The WOW.Com Content Network
The CCA tail is a cytosine-cytosine-adenine sequence at the 3′ end of the tRNA molecule. The amino acid loaded onto the tRNA by aminoacyl tRNA synthetases, to form aminoacyl-tRNA, is covalently bonded to the 3′-hydroxyl group on the CCA tail. [9] This sequence is important for the recognition of tRNA by enzymes and critical in translation.
For example, if the amino acid that attach to the end is phenylalanine, the reaction will be catalyzed by phenylalanine-tRNA synthase to produce tRNA phe. [4] The other end—the bottom often called the "DNA arm"—consists of a three base sequence that pairs with a complementary base sequence in a mRNA. [5]
All together, the actual stability of the ester bond influences the susceptibility of the aa-tRNA to hydrolysis within the body at physiological pH and ion concentrations. It is thermodynamically favorable that the aminoacylation process yield a stable aa-tRNA molecule, thus providing for the acceleration and productivity of polypeptide synthesis.
The synthetase first binds ATP and the corresponding amino acid (or its precursor) to form an aminoacyl-adenylate, releasing inorganic pyrophosphate (PPi).The adenylate-aaRS complex then binds the appropriate tRNA molecule's D arm, and the amino acid is transferred from the aa-AMP to either the 2'- or the 3'-OH of the last tRNA nucleotide (A76) at the 3'-end.
The amino acid is joined by its carboxyl group to the 3' OH of the tRNA by an ester bond. When the tRNA has an amino acid linked to it, the tRNA is termed "charged". In bacteria, this aminoacyl-tRNA is carried to the ribosome by EF-Tu, where mRNA codons are matched through complementary base pairing to specific tRNA anticodons. Aminoacyl-tRNA ...
Unlike double-stranded DNA, RNA is usually a single-stranded molecule (ssRNA) [4] in many of its biological roles and consists of much shorter chains of nucleotides. [5] However, double-stranded RNA (dsRNA) can form and (moreover) a single RNA molecule can, by complementary base pairing, form intrastrand double helixes, as in tRNA.
The T-arm or T-loop is a specialized region on the tRNA molecule which acts as a special recognition site for the ribosome to form a tRNA-ribosome complex during protein biosynthesis or translation (biology). The T-arm has two components to it; the T-stem and the T-loop.
In the mid-1960s, the role of tRNA in protein synthesis was being intensively studied. In 1965, Holley et al. purified and sequenced the first tRNA molecule, initially proposing that it adopted a cloverleaf structure, based largely on the ability of certain regions of the molecule to form stem loop structures. [60]