Ad
related to: initial rate concentration graph generator
Search results
Results From The WOW.Com Content Network
The Lineweaver–Burk plot derives from a transformation of the Michaelis–Menten equation, = + in which the rate is a function of the substrate concentration and two parameters , the limiting rate, and , the Michaelis constant.
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
In biochemistry, a Hanes–Woolf plot, Hanes plot, or plot of / against is a graphical representation of enzyme kinetics in which the ratio of the initial substrate concentration to the reaction velocity is plotted against .
, which is often written as , [5] represents the limiting rate approached by the system at saturating substrate concentration for a given enzyme concentration. The Michaelis constant K m {\displaystyle K_{\mathrm {m} }} is defined as the concentration of substrate at which the reaction rate is half of V {\displaystyle V} . [ 6 ]
A common form for the rate equation is a power law: [6] = [] [] The constant is called the rate constant.The exponents, which can be fractional, [6] are called partial orders of reaction and their sum is the overall order of reaction.
Progress curve for an enzyme reaction. The slope in the initial rate period is the initial rate of reaction v. The Michaelis–Menten equation describes how this slope varies with the concentration of substrate. Enzyme assays are laboratory procedures that measure the rate of enzyme reactions. Since enzymes are not consumed by the reactions ...
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant
As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.