Search results
Results From The WOW.Com Content Network
The following tables compare notable software frameworks, libraries, and computer programs for deep ... List of datasets for machine-learning research; List of ...
Google JAX is a machine learning framework for transforming numerical functions. [ 71 ] [ 72 ] [ 73 ] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and TensorFlow's XLA (Accelerated Linear Algebra).
Shogun is a free, open-source machine learning software library written in C++. It offers numerous algorithms and data structures for machine learning problems. It offers interfaces for Octave, Python, R, Java, Lua, Ruby and C# using SWIG. It is licensed under the terms of the GNU General Public License version 3 or later.
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]
The framework includes a large class library called Framework Class Library (FCL). Thanks to the hosting virtual machine, different languages that are compliant with the .NET Common Language Infrastructure (CLI) can operate on the same kind of data structures. These languages can therefore use the FCL and other .NET libraries that are also ...
JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).
The analysis class libraries provide various digital signal processing, signal filtering, signal generation, peak detection, and other general mathematical functionality. ML.NET is a free software machine learning library for the C# programming language. [3] [4] The NAG Library has C# API. Commercially licensed.