When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  3. Weapons-grade nuclear material - Wikipedia

    en.wikipedia.org/wiki/Weapons-grade_nuclear_material

    Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

  4. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    But since plutonium-breeding reactors produce plutonium from U238, and thorium reactors produce fissile U233 from thorium, all breeding cycles could theoretically pose proliferation risks. [61] However U-232, which is always present in U-233 produced in breeder reactors, is a strong gamma-emitter via its daughter products, and would make weapon ...

  5. Uranium-233 - Wikipedia

    en.wikipedia.org/wiki/Uranium-233

    or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. [2] It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

  6. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    The thorium fuel cycle has several potential advantages over a uranium fuel cycle, including thorium's greater abundance, superior physical and nuclear properties, reduced plutonium and actinide production, [1] and better resistance to nuclear weapons proliferation when used in a traditional light water reactor [1] [2] though not in a molten ...

  7. Thorium - Wikipedia

    en.wikipedia.org/wiki/Thorium

    Thorium is a chemical element; it has symbol Th and atomic number 90. ... Another possible source of exposure is thorium dust produced at weapons testing ranges, as ...

  8. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right. The burnt fuels are Thorium with Reactor-Grade Plutonium (RGPu), Thorium with Weapons-Grade Plutonium (WGPu) and Mixed Oxide fuel (MOX, no thorium). For RGPu and WGPu, the initial amount of U-233 and its decay around a ...

  9. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has ...