Ad
related to: when to use ddu mean in statistics practice
Search results
Results From The WOW.Com Content Network
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
The sample mean, on the other hand, is an unbiased [5] estimator of the population mean μ. [ 3 ] Note that the usual definition of sample variance is S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2 {\displaystyle S^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}(X_{i}-{\overline {X}}\,)^{2}} , and this is an unbiased estimator of the population variance.
In statistical theory, a U-statistic is a class of statistics defined as the average over the application of a given function applied to all tuples of a fixed size. The letter "U" stands for unbiased. [citation needed] In elementary statistics, U-statistics arise naturally in producing minimum-variance unbiased estimators.
This proposition is (sometimes) known as the law of the unconscious statistician because of a purported tendency to think of the aforementioned law as the very definition of the expected value of a function g(X) and a random variable X, rather than (more formally) as a consequence of the true definition of expected value. [1]
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
"I mean, I feel hydrated, my skin sucked it up, I guess it's a good thing. We'll see tomorrow, I don't know," she added. Read the original article on People. Show comments. Advertisement.
In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as ...