When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    The sum of degrees of all six vertices is 2 + 3 + 2 + 3 + 3 + 1 = 14, twice the number of edges. In graph theory , the handshaking lemma is the statement that, in every finite undirected graph , the number of vertices that touch an odd number of edges is even.

  3. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    The degree sum formula states that, given a graph = (,), ⁡ = | |. The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group ...

  4. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges).

  5. Dual graph - Wikipedia

    en.wikipedia.org/wiki/Dual_graph

    Another given by Harary involves the handshaking lemma, according to which the sum of the degrees of the vertices of any graph equals twice the number of edges. In its dual form, this lemma states that in a plane graph, the sum of the numbers of sides of the faces of the graph equals twice the number of edges. [29]

  6. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.

  7. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.

  8. Independent set (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Independent_set_(graph_theory)

    The maximum independent set problem is the special case in which all weights are one. In the maximal independent set listing problem, the input is an undirected graph, and the output is a list of all its maximal independent sets. The maximum independent set problem may be solved using as a subroutine an algorithm for the maximal independent set ...

  9. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For two convex polygons P and Q in the plane with m and n vertices, their Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time O(m + n) by a very simple procedure, which may be informally described as follows. Assume that the edges of a polygon are given and the direction, say, counterclockwise, along the ...