When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flexibility method - Wikipedia

    en.wikipedia.org/wiki/Flexibility_method

    Equations and are the solution for the primary system which is the original system that has been rendered statically determinate by cuts that expose the redundant forces . Equation ( 5 ) effectively reduces the set of unknown forces to X {\displaystyle \mathbf {X} } .

  3. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of ...

  4. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    In mathematics, the characteristic equation (or auxiliary equation [1]) is an algebraic equation of degree n upon which depends the solution of a given n th-order differential equation [2] or difference equation. [3] [4] The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  6. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  7. Movable singularity - Wikipedia

    en.wikipedia.org/wiki/Movable_singularity

    This solution has a branchpoint at =, and so the equation has a movable branchpoint (since it depends on the choice of the solution, i.e. the choice of the constant c). It is a basic feature of linear ordinary differential equations that singularities of solutions occur only at singularities of the equation, and so linear equations do not have ...

  8. Singular solution - Wikipedia

    en.wikipedia.org/wiki/Singular_solution

    A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...

  9. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2 ...