Search results
Results From The WOW.Com Content Network
In terms of chemical potential, at the boiling point, the liquid and gas phases have the same chemical potential. Adding a nonvolatile solute lowers the solvent’s chemical potential in the liquid phase, but the gas phase remains unaffected. This shifts the equilibrium between phases to a higher temperature, elevating the boiling point.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [ 11 ]
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then acetonitrile. Consider the following acid dissociation equilibrium: HA ⇌ A − + H + Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile.
The addition of a material separation agent, such as benzene to an ethanol/water mixture, changes the molecular interactions and eliminates the azeotrope. Added in the liquid phase, the new component can alter the activity coefficient of various compounds in different ways thus altering a mixture's relative volatility.
[1] [2] At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. [3] [4] [5] In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system. [6]
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory (SIT theory), but Pitzer parameters are more difficult to determine experimentally than ...