Search results
Results From The WOW.Com Content Network
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness . High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
The actual elastic modulus lies between the curves. In materials science , a general rule of mixtures is a weighted mean used to predict various properties of a composite material . [ 1 ] [ 2 ] [ 3 ] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus , ultimate tensile strength , thermal conductivity ...
That is, the modulus is an intensive property of the material; stiffness, on the other hand, is an extensive property of the solid body that is dependent on the material and its shape and boundary conditions. For example, for an element in tension or compression, the axial stiffness is = where
A modulus of 255 is used above and in examples below for Fletcher-16, however some real-world implementations use 256. The TCP protocol's alternate checksum has Fletcher-16 with a 256 modulus, [3] as do the checksums of UBX-* messages from a U-blox GPS. [4] Which modulus is used is dependent on the implementation.
The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength.
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
Influences of selected glass component additions on the bulk modulus of a specific base glass. [6] A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~ 3500 bar) (assumed constant or weakly pressure dependent bulk modulus).
E is a material constant called Young's modulus or elastic modulus; ε is the resulting strain. This relationship only applies in the elastic range and indicates that the slope of the stress vs. strain curve can be used to find Young's modulus (E). Engineers often use this calculation in tensile tests.