Search results
Results From The WOW.Com Content Network
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon . Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint.
The apothem is half the cotangent of /, and the area of each of the 14 small triangles is one-fourth of the apothem. The area of a regular heptagon inscribed in a circle of radius R is 7 R 2 2 sin 2 π 7 , {\displaystyle {\tfrac {7R^{2}}{2}}\sin {\tfrac {2\pi }{7}},} while the area of the circle itself is π R 2 ; {\displaystyle \pi R^{2 ...
More generally, a polygon in which all vertices are concyclic is called a cyclic polygon. A polygon is cyclic if and only if the perpendicular bisectors of its edges are concurrent. [10] Every regular polygon is a cyclic polygon. For a cyclic polygon with an odd number of sides, all angles are equal if and only if the polygon is regular.
Contracting an edge of a polygon-circle graph results in another polygon-circle graph. A geometric representation of the new graph may be formed by replacing the polygons corresponding to the two endpoints of the contracted edge by their convex hull. Alternatively, in the alternating sequence representing the original graph, combining the ...
The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals times the apothem (radius of the inscribed circle). All internal angles are 120 degrees . A regular hexagon has six rotational symmetries ( rotational symmetry of order six ) and six reflection symmetries ( six lines of symmetry ), making ...
Let the circle on AF as diameter cut OB in K, and let the circle whose centre is E and radius EK cut OA in N 3 and N 5; then if ordinates N 3 P 3, N 5 P 5 are drawn to the circle, the arcs AP 3, AP 5 will be 3/17 and 5/17 of the circumference." The point N 3 is very close to the center point of Thales' theorem over AF.
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...