Search results
Results From The WOW.Com Content Network
An and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network.An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation.
Rent's rule pertains to the organization of computing logic, specifically the relationship between the number of external signal connections to a logic block (i.e., the number of "pins") with the number of logic gates in the logic block, and has been applied to circuits ranging from small digital circuits to mainframe computers. Put simply, it ...
Karnaugh maps are used to simplify real-world logic requirements so that they can be implemented using the minimal number of logic gates. A sum-of-products expression (SOP) can always be implemented using AND gates feeding into an OR gate, and a product-of-sums expression (POS) leads to OR gates feeding an AND
Steps with associated actions; Transitions with associated logic conditions; Directed links between steps and transitions. Steps in an SFC diagram can be active or inactive. Actions are only executed for active steps. A step can be active for one of two motives: It is an initial step as specified by the programmer.
An AND gate in constraint logic. As the minimum in-degree of the node is 2, the top edge can be out if and only if the two bottom edges are in. Example of a constraint graph. [1] In the simplest version of nondeterministic constraint logic, each edge of an undirected graph has weight either one or two.
The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.
As implied by the name, it is composed of two steps, placement and routing. The first step, placement, involves deciding where to place all electronic components, circuitry, and logic elements in a generally limited amount of space. This is followed by routing, which decides the exact design of all the wires needed to connect the placed components.
The SR AND-OR latch is easier to understand, because both gates can be explained in isolation, again with the control view of AND and OR from above. When neither S or R is set, then both the OR gate and the AND gate are in "hold mode", i.e., they let the input through, their output is the input from the feedback loop.