Search results
Results From The WOW.Com Content Network
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
De facto standard for scientific computations in Python. ScientificPython, a library with a different set of scientific tools; SymPy, a library based on New BSD license for symbolic computation. Features of Sympy range from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics.
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by (,). With this norm, (,) is a Banach space, and a Hilbert space for p = 2.
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
Where is the intersection (i.e. the dot product) of the document (d 2 in the figure to the right) and the query (q in the figure) vectors, ‖ ‖ is the norm of vector d 2, and ‖ ‖ is the norm of vector q. The norm of a vector is calculated as such: