Search results
Results From The WOW.Com Content Network
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis . For some time it was thought that certain theorems, like the prime number theorem , could only be proved using "higher" mathematics.
Mathematical logic is the study of formal logic within mathematics.Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory).
Forms of logical reasoning can be distinguished based on how the premises support the conclusion. Deductive arguments offer the strongest possible support. Non-deductive arguments are weaker but are nonetheless correct forms of reasoning. [28] [29] The term "proof" is often used for deductive arguments or very strong non-deductive arguments. [30]
Indeed, the above proof that the law of excluded middle implies proof by contradiction can be repurposed to show that a decidable proposition is ¬¬-stable. A typical example of a decidable proposition is a statement that can be checked by direct computation, such as " n {\displaystyle n} is prime" or " a {\displaystyle a} divides b ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Formal proof provides the main exception, where the criteria for proofhood are ironclad and it is impermissible to defend any step in the reasoning as "obvious" (except for the necessary ability of the one proving and the one being proven to, to correctly identify any symbol used in the proof.); [15] for a well-formed formula to qualify as part ...
The basic property of the completeness of the real numbers that is required for defining and using real numbers involves a quantification on infinite sets. Indeed, this property may be expressed either as for every infinite sequence of real numbers, if it is a Cauchy sequence , it has a limit that is a real number , or as every subset of the ...
Proof theory is a major branch [1] ... As basic axioms of the ... This straightforwardly implies that propositional reasoning about provability in Peano Arithmetic is ...