Search results
Results From The WOW.Com Content Network
The infrared absorption spectrum of NASA laboratory sulfur dioxide ice is compared with the infrared absorption spectra of ices on Jupiter's moon, Io credit NASA, Bernard Schmitt, and UKIRT. Absorption spectroscopy is useful in chemical analysis [5] because of its specificity and its quantitative nature. The specificity of absorption spectra ...
Emission spectrum of a ceramic metal halide lamp. A demonstration of the 589 nm D 2 (left) and 590 nm D 1 (right) emission sodium D lines using a wick with salt water in a flame The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a ...
Schematic representation of the absorption line shape of an electronic excitation. The narrow component at the frequency ω′ is the zero-phonon line and the broader feature is the phonon sideband. In emission, the relative positions of the two components are mirrored about the center of the zero-phonon line at ω′.
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
This is the spectrum of a blue sky somewhat close to the horizon, looking east with the sun to the west at around 3–4 pm on a clear day. A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range
Atomic absorption lines are observed in the solar spectrum and referred to as Fraunhofer lines after their discoverer. A comprehensive explanation of the hydrogen spectrum was an early success of quantum mechanics and explained the Lamb shift observed in the hydrogen spectrum, which further led to the development of quantum electrodynamics .
Emission lines and absorption lines compared to a continuous spectrum. In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. [1]
Stokes fluorescence is the emission of a longer-wavelength photon (lower frequency or energy) by a molecule that has absorbed a photon of shorter wavelength (higher frequency or energy). [6] [7] [8] Both absorption and radiation (emission) of energy are distinctive for a particular molecular structure. If a material has a direct bandgap in the ...