When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors ...

  3. False discovery rate - Wikipedia

    en.wikipedia.org/wiki/False_discovery_rate

    In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses ) that are false (incorrect rejections of ...

  4. False positive rate - Wikipedia

    en.wikipedia.org/wiki/False_positive_rate

    The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.

  5. Detection error tradeoff - Wikipedia

    en.wikipedia.org/wiki/Detection_error_tradeoff

    The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.

  6. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their ...

  7. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    A variant of the Neyman–Pearson lemma has found an application in the seemingly unrelated domain of the economics of land value. One of the fundamental problems in consumer theory is calculating the demand function of the consumer given the prices. In particular, given a heterogeneous land-estate, a price measure over the land, and a ...

  8. Observer bias - Wikipedia

    en.wikipedia.org/wiki/Observer_bias

    The definition can be further expanded upon to include the systematic difference between what is observed due to variation in observers, and what the true value is. [ 2 ] Observer bias is the tendency of observers to not see what is there, but instead to see what they expect or want to see.

  9. Bloom filter - Wikipedia

    en.wikipedia.org/wiki/Bloom_filter

    As a result, the false positive rate for duplicate detection is the same as the false positive rate of the used bloom filter. The process of filtering out the most 'unique' elements can also be repeated multiple times by changing the hash function in each filtering step.

  1. Related searches what is a false detector function in statistics definition economics answer

    false discovery control levelswhat is false positive rate