Search results
Results From The WOW.Com Content Network
The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors ...
In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses ) that are false (incorrect rejections of ...
The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.
The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.
V is the number of false positives (Type I error) (also called "false discoveries") S is the number of true positives (also called "true discoveries") T is the number of false negatives (Type II error) U is the number of true negatives = + is the number of rejected null hypotheses (also called "discoveries", either true or false)
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
A variant of the Neyman–Pearson lemma has found an application in the seemingly unrelated domain of the economics of land value. One of the fundamental problems in consumer theory is calculating the demand function of the consumer given the prices. In particular, given a heterogeneous land-estate, a price measure over the land, and a ...