Ad
related to: random variable formula in probability calculator statistics with mean and standard- Printers & Print Supplies
Find Best Sellers & Supplies for a
Number of Different Printer Types.
- Planners
Help Plan Your Day with These
Planners, Calendars & More.
- Scanners
Scan & Store Documents Digitally
at Your Convenience.
- Office Furniture
Chairs, Lamps & More to Help You
Build a More Comfortable Office.
- Writing Supplies
Recommendations & Results for
Pens, Drawing Supplies & More.
- Office & School Supplies
See Featured Categories on Supplies
Including Crafts, Paper and More.
- Printers & Print Supplies
Search results
Results From The WOW.Com Content Network
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
The standard deviation of a probability distribution is the same as that of a random variable having that distribution. Not all random variables have a standard deviation. If the distribution has fat tails going out to infinity, the standard deviation might not exist, because the integral might not converge.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
Discrete probability distribution: for many random variables with finitely or countably infinitely many values. Probability mass function (pmf): function that gives the probability that a discrete random variable is equal to some value. Frequency distribution: a table that displays the frequency of various outcomes in a sample.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
For example, for any random variable with finite expectation, the Chebyshev inequality implies that there is at least a 75% probability of an outcome being within two standard deviations of the expected value. However, in special cases the Markov and Chebyshev inequalities often give much weaker information than is otherwise available.