Search results
Results From The WOW.Com Content Network
A metric space is said to be totally bounded if every sequence admits a Cauchy subsequence; in complete metric spaces, a set is compact if and only if it is closed and totally bounded. [2] Each totally bounded space is bounded (as the union of finitely many bounded sets is bounded).
X is closed and bounded (as a subset of any metric space whose restricted metric is d). The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but ...
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.
For this reason, spaces that have an edge are typically excluded from consideration. However, there exist many finite spaces, such as the 3-sphere and 3-torus, that have no edges. Mathematically, these spaces are referred to as being compact without boundary. The term compact means that it is finite in extent ("bounded") and complete. The term ...
The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and
A metric space M is bounded if there is an r such that no pair of points in M is more than distance r apart. [b] The least such r is called the diameter of M. The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded.
A topological vector space is said to have the Heine–Borel property [9] (R.E. Edwards uses the term boundedly compact space [10]) if each closed bounded [11] set in is compact. [12] No infinite-dimensional Banach spaces have the Heine–Borel property (as
In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion).