When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Totally bounded space - Wikipedia

    en.wikipedia.org/wiki/Totally_bounded_space

    A metric space is said to be totally bounded if every sequence admits a Cauchy subsequence; in complete metric spaces, a set is compact if and only if it is closed and totally bounded. [2] Each totally bounded space is bounded (as the union of finitely many bounded sets is bounded).

  3. Compact space - Wikipedia

    en.wikipedia.org/wiki/Compact_space

    X is closed and bounded (as a subset of any metric space whose restricted metric is d). The converse may fail for a non-Euclidean space; e.g. the real line equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but ...

  4. Locally compact space - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_space

    In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

  5. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    For this reason, spaces that have an edge are typically excluded from consideration. However, there exist many finite spaces, such as the 3-sphere and 3-torus, that have no edges. Mathematically, these spaces are referred to as being compact without boundary. The term compact means that it is finite in extent ("bounded") and complete. The term ...

  6. Bounded set - Wikipedia

    en.wikipedia.org/wiki/Bounded_set

    The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and

  7. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    A metric space M is bounded if there is an r such that no pair of points in M is more than distance r apart. [b] The least such r is called the diameter of M. The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded.

  8. Heine–Borel theorem - Wikipedia

    en.wikipedia.org/wiki/Heine–Borel_theorem

    A topological vector space is said to have the Heine–Borel property [9] (R.E. Edwards uses the term boundedly compact space [10]) if each closed bounded [11] set in is compact. [12] No infinite-dimensional Banach spaces have the Heine–Borel property (as

  9. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion).