Search results
Results From The WOW.Com Content Network
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 + 1 / 2 , 5/4, and √ 2 are not. [8] The integers form the smallest group and the smallest ring containing the natural numbers.
A bar model used to solve an addition problem. This pictorial approach is typically used as a problem-solving tool in Singapore math. Singapore math teaches students mathematical concepts in a three-step learning process: concrete, pictorial, and abstract. [3] This learning process was based on the work of an American psychologist, Jerome Bruner.
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
On the other hand, the maximal real subfields Q(cos(2π/2 n)) of the 2-power cyclotomic fields Q(ζ 2 n) (where n is a positive integer) are known to have class number 1 for n≤8, [8] and it is conjectured that they have class number 1 for all n. Weber showed that these fields have odd class number.