Ads
related to: sketching logarithmic functions practice problems kuta answersstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
Tractrix with object initially at (4, 0). Suppose the object is placed at (a, 0) and the puller at the origin, so that a is the length of the pulling thread. (In the example shown to the right, the value of a is 4.)
In geometry, curve sketching (or curve tracing) are techniques for producing a rough idea of overall shape of a plane curve given its equation, without computing the large numbers of points required for a detailed plot. It is an application of the theory of curves to find their main features.
However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.
In algebraic geometry, a log structure provides an abstract context to study semistable schemes, and in particular the notion of logarithmic differential form and the related Hodge-theoretic concepts. This idea has applications in the theory of moduli spaces, in deformation theory and Fontaine's p-adic Hodge theory, among others.
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.