When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .

  3. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured.

  4. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    The archetypical example is the real projective plane, also known as the extended Euclidean plane. [4] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.

  5. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.

  6. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.

  8. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]

  9. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    Möbius geometry is the study of "Euclidean space with a point added at infinity", or a "Minkowski (or pseudo-Euclidean) space with a null cone added at infinity".That is, the setting is a compactification of a familiar space; the geometry is concerned with the implications of preserving angles.