When.com Web Search

  1. Ad

    related to: direction cosine matrix to quaternion line graph formula excel template

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    More generally, direction cosine refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis. Simply put, direction cosines provide an easy method of representing ...

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    It turns out that g ∈ SO(3) represented in this way by Π u (g) can be expressed as a matrix Π u (g) ∈ SU(2) (where the notation is recycled to use the same name for the matrix as for the transformation of it represents). To identify this matrix, consider first a rotation g φ about the z-axis through an angle φ,

  7. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    In the active transformation (left), a point P is transformed to point P ′ by rotating clockwise by angle θ about the origin of a fixed coordinate system. In the passive transformation (right), point P stays fixed, while the coordinate system rotates counterclockwise by an angle θ about its origin.

  8. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    is the rotation matrix through an angle θ counterclockwise about the axis k, and I the 3 × 3 identity matrix. [4] This matrix R is an element of the rotation group SO(3) of ℝ 3 , and K is an element of the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} generating that Lie group (note that K is skew-symmetric, which characterizes ...

  9. Cayley transform - Wikipedia

    en.wikipedia.org/wiki/Cayley_transform

    Cayley transform of upper complex half-plane to unit disk. On the upper half of the complex plane, the Cayley transform is: [1] [2] = +.Since {,,} is mapped to {,,}, and Möbius transformations permute the generalised circles in the complex plane, maps the real line to the unit circle.