Search results
Results From The WOW.Com Content Network
Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group. [ 1 ] [ 2 ] Catalytic hydrogenation
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
A second type of transamination reaction can be described as a nucleophilic substitution of one amine or amide anion on an amine or ammonium salt. [1] For example, the attack of a primary amine by a primary amide anion can be used to prepare secondary amines: RNH 2 + R'NH − → RR'NH + NH 2 −
Reductive amination (also known as reductive alkylation) is a form of amination that converts a carbonyl group to an amine via an intermediate imine. The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under
The vast majority of these procedures utilize the commercially available salt N,O-dimethylhydroxylamine hydrochloride [MeO(Me)NH•HCl], which is typically easier to handle than the free amine. [6] Treatment of an ester or lactone with AlMe 3 or AlMe 2 Cl affords the corresponding Weinreb amide in good yields. Alternatively, non-nucleophilic ...
The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines. The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the ...
The secondary amide 1 reacts via its enolized form with phosphorus pentachloride to form the oxonium ion 2. This produces a chloride ion which deprotonates the oxonium ion to form and imine 3 and hydrogen chloride. These then react with one another to form an amine, with loss of the phosphorus chloride residue.
Amine ligation followed by deprotonation by base produces the palladium amide. (Chelating systems have been shown to undergo these two steps in reverse order, with base complexation preceding amide formation.) This key intermediate reductively eliminates to produce the product and regenerate the catalyst.