Search results
Results From The WOW.Com Content Network
The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O).
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
This can be done by showing that other rules, that were thought to be primary, are based on these rules. The dictum de omni is the highest principle of affirmative syllogisms. It says: Whatever is universally affirmed of a concept is also affirmed of everything contained under it. This is grounded on the rule of affirmative ratiocination.
Disjunctive syllogism (sometimes abbreviated DS) has one of the same characteristics as modus tollens in that it contains a premise, then in a second premise it denies a statement, leading to the conclusion. In Disjunctive Syllogism, the first premise establishes two options.
categorical syllogism A form of deductive reasoning in Aristotelian logic consisting of three categorical propositions that involve three terms and deduce a conclusion from two premises. category In mathematics and logic, a collection of objects and morphisms between them that satisfies certain axioms, fundamental to category theory. category ...
An invalid hypothetical syllogism either affirms the consequent (fallacy of the converse) or denies the antecedent (fallacy of the inverse). A pure hypothetical syllogism is a syllogism in which both premises and the conclusion are all conditional statements. The antecedent of one premise must match the consequent of the other for the ...
At present, syllogism is used exclusively as the method used to reach a conclusion closely resembling the "syllogisms" of traditional logic texts: two premises followed by a conclusion each of which is a categorical sentence containing all together three terms, two extremes which appear in the conclusion and one middle term which appears in ...
Categorical sentences may then be abbreviated as follows: AaB = A belongs to every B (Every B is A) AeB = A belongs to no B (No B is A) AiB = A belongs to some B (Some B is A) AoB = A does not belong to some B (Some B is not A) From the viewpoint of modern logic, only a few types of sentences can be represented in this way. [8]