Search results
Results From The WOW.Com Content Network
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
For example, a vector is a simple tensor of rank one. In three dimensions, it has three components. The value of these components will depend on the coordinate system chosen to represent the vector, but the magnitude of the vector is a physical quantity (a scalar) and is independent of the Cartesian coordinate system chosen to represent the ...
A scalar function that depends entirely on the principal invariants of a tensor is objective, i.e., independent of rotations of the coordinate system. This property is commonly used in formulating closed-form expressions for the strain energy density , or Helmholtz free energy , of a nonlinear material possessing isotropic symmetry.
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics.These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.
Each of these tensor equations corresponds to four scalar equations, one for each value of β. Using the antisymmetric tensor notation and comma notation for the partial derivative (see Ricci calculus ), the second equation can also be written more compactly as: F [ α β , γ ] = 0. {\displaystyle F_{[\alpha \beta ,\gamma ]}=0.}
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
In the mathematical theory of elasticity, Saint-Venant's compatibility condition defines the relationship between the strain and a displacement field by = (+) where ,. Barré de Saint-Venant derived the compatibility condition for an arbitrary symmetric second rank tensor field to be of this form, this has now been generalized to higher rank symmetric tensor fields on spaces of dimension