When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic mean diameter - Wikipedia

    en.wikipedia.org/wiki/Quadratic_mean_diameter

    For n trees, QMD is calculated using the quadratic mean formula: where is the diameter at breast height of the i th tree. Compared to the arithmetic mean, QMD assigns greater weight to larger trees – QMD is always greater than or equal to arithmetic mean for a given set of trees.

  3. Stand density index - Wikipedia

    en.wikipedia.org/wiki/Stand_Density_Index

    When the quadratic mean diameter equals 10 inches (250 mm), the log of N equals the log of the stand density index. In equation form: log 10 SDI = -1.605(1) + k Which means that: k = log 10 SDI + 1.605 Substituting the value of k above into the reference-curve formula gives the equation: log 10 N = log 10 SDI + 1.605 - 1.605 log 10 D

  4. Carlyle circle - Wikipedia

    en.wikipedia.org/wiki/Carlyle_circle

    So p 1 and p 2 are the roots of the quadratic equation x 2 + x − 1 = 0. The Carlyle circle associated with this quadratic has a diameter with endpoints at (0, 1) and (−1, −1) and center at (−1/2, 0). Carlyle circles are used to construct p 1 and p 2. From the definitions of p 1 and p 2 it also follows that

  5. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    US hat size is the circumference of the head, measured in inches, divided by pi, rounded to the nearest 1/8 inch. This corresponds to the 1D mean diameter. [1] Diameter at breast height is the circumference of tree trunk, measured at height of 4.5 feet, divided by pi. This corresponds to the 1D mean diameter.

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  7. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Intuitively, the curvature describes for any part of a curve how much the curve direction changes over a small distance travelled (e.g. angle in rad/m), so it is a measure of the instantaneous rate of change of direction of a point that moves on the curve: the larger the curvature, the larger this rate of change.

  8. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc lengths are denoted by s, since the Latin word for length (or size) is spatium. In the following lines, r {\displaystyle r} represents the radius of a circle , d {\displaystyle d} is its diameter , C {\displaystyle C} is its circumference , s {\displaystyle s} is the length of an arc of the circle, and θ {\displaystyle \theta } is the ...

  9. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.