Ads
related to: conjugate binomials factor examples mathstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial p K,α (x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous.
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that ...
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.
The main reason for studying these numbers is to obtain their factorizations.Aside from algebraic factors, which are obtained by factoring the underlying polynomial (binomial) that was used to define the number, such as difference of two squares and sum of two cubes, there are other prime factors (called primitive prime factors, because for a given they do not factorize with <, except for a ...
The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...