When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    The defining integral of arc length does not always have a closed-form expression, and numerical integration may be used instead to obtain numerical values of arc length. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification .

  3. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    The integral I n is divided up into integrals each on some arc of the circle that is adjacent to ζ, of length a function of s (again, at our discretion). The arcs make up the whole circle; the sum of the integrals over the major arcs is to make up 2 πiF ( n ) (realistically, this will happen up to a manageable remainder term).

  4. Lemniscate elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_elliptic_functions

    The trigonometric sine and cosine analogously relate the arc length of an arc of a unit-diameter circle to the distance of one endpoint from the origin. L {\displaystyle {\mathcal {L}}} , the lemniscate of Bernoulli with unit distance from its center to its furthest point (i.e. with unit "half-width"), is essential in the theory of the ...

  5. Lemniscate of Bernoulli - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_of_Bernoulli

    The determination of the arc length of arcs of the lemniscate leads to elliptic integrals, as was discovered in the eighteenth century. Around 1800, the elliptic functions inverting those integrals were studied by C. F. Gauss (largely unpublished at the time, but allusions in the notes to his Disquisitiones Arithmeticae).

  6. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .

  7. Estimation lemma - Wikipedia

    en.wikipedia.org/wiki/Estimation_lemma

    Hence, if the overall largest | f (z) | is summed over the entire path then the integral of f (z) over the path must be less than or equal to it. Formally, the inequality can be shown to hold using the definition of contour integral, the absolute value inequality for integrals and the formula for the length of a curve as follows:

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  9. Legendre form - Wikipedia

    en.wikipedia.org/wiki/Legendre_form

    In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name elliptic integrals because [1] the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity (the ellipse being defined parametrically by = ⁡ (), = ⁡ ()).