Ad
related to: shannon's information theory pdf full book with page numbers
Search results
Results From The WOW.Com Content Network
The landmark event establishing the discipline of information theory and bringing it to immediate worldwide attention was the publication of Claude E. Shannon's classic paper "A Mathematical Theory of Communication" in the Bell System Technical Journal in July and October 1948.
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:
According to Neil Sloane, an AT&T Fellow who co-edited Shannon's large collection of papers in 1993, the perspective introduced by Shannon's communication theory (now called "information theory") is the foundation of the digital revolution, and every device containing a microprocessor or microcontroller is a conceptual descendant of Shannon's ...
In the view of Jaynes (1957), [19] thermodynamic entropy, as explained by statistical mechanics, should be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as being proportional to the amount of further Shannon information needed to define the detailed microscopic state of the system, that remains ...
The publication of Shannon's 1948 paper, "A Mathematical Theory of Communication", in the Bell System Technical Journal was the founding of information theory as we know it today. Many developments and applications of the theory have taken place since then, which have made many modern devices for data communication and storage such as CD-ROMs ...
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.
The most famous IM is the so-called Shannon-entropy (1948), which determines how much additional information the observer still requires in order to have all the available knowledge regarding a given system S, when all he/she has is a probability density function (PDF) defined on appropriate elements of such system. This is then a "missing ...