Search results
Results From The WOW.Com Content Network
Example: sin(0.755) = (+) + () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given. The result is accurate to the four digits given.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1] In the table below, the label "Undefined" represents a ratio :
The constants a, b, c, p, q and r (only five of them are independent) can be determined by assuming that the formula must be exactly valid when x = 0, π/6, π/2, π, and further assuming that it has to satisfy the property that sin(x) = sin(π − x). [2] [3] This procedure produces the formula expressed using radian measure of angles.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
Angle, x sin(x) cos(x) Degrees Radians Gradians Turns Exact Decimal Exact Decimal 0° 0 0 g: 0 0 0 1 1 30° 1 / 6 π 33 + 1 / 3 g 1 / 12 1 / 2 0.5 0.8660 45° 1 / 4 π: 50 g 1 / 8 0.7071 0.7071 60° 1 / 3 π 66 + 2 / 3 g
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.