When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]

  3. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The points in the patch corresponding to the corners of the deformed unit square coincide with four of the control points. However, a Bézier surface does not generally pass through its other control points. Generally, the most common use of Bézier surfaces is as nets of bicubic patches (where m = n = 3). The geometry of a single bicubic patch ...

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  5. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability. [2] [3]

  6. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    The following JavaScript function applies De Casteljau's algorithm to an array of control points or poles as originally named by De Casteljau to reduce them one by one until reaching a point in the curve for a given t between 0 for the first point of the curve and 1 for the last one

  7. Cubic Hermite spline - Wikipedia

    en.wikipedia.org/wiki/Cubic_Hermite_spline

    The curve is named after Edwin Catmull and Raphael Rom. The principal advantage of this technique is that the points along the original set of points also make up the control points for the spline curve. [7] Two additional points are required on either end of the curve. The uniform Catmull–Rom implementation can produce loops and self ...

  8. Variation diminishing property - Wikipedia

    en.wikipedia.org/wiki/Variation_diminishing_property

    The process of degree elevation for Bézier curves can be considered an instance of piecewise linear interpolation. Piecewise linear interpolation can be shown to be variation diminishing. [4] Thus, if R 1, R 2, R 3 and so on denote the set of polygons obtained by the degree elevation of the initial control polygon R, then it can be shown that

  9. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves. In geometric modelling and in computer graphics, a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least continuous. In other words, a ...