Search results
Results From The WOW.Com Content Network
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
Here a key goal of lubrication theory is to determine the pressure distribution in the fluid volume, and hence the forces on the bearing components. The working fluid in this case is often termed a lubricant. Free film lubrication theory is concerned with the case in which one of the surfaces containing the fluid is a free surface. In that case ...
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
The study of momentum transfer, or fluid mechanics can be divided into two branches: fluid statics (fluids at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x-direction parallel to a solid surface, the fluid has x-directed momentum, and its concentration is υ x ρ .
In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...
Annual Review of Fluid Mechanics; Experiments in Fluids; Fluid Dynamics Research; Flow, Turbulence and Combustion; International Journal for Numerical Methods in Fluids; International Journal of Multiphase Flow; Journal of Aircraft; Journal of Chemical Physics; Journal of Computational Physics; Journal of Experiments in Fluid Mechanics; Journal ...
A direct numerical simulation (DNS) [1] [2] is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved.
This Fluid dynamics problem can be solved by different Numerical Methods. However, to solve it with Numerical Methods several assumptions have to be considered. And as a result shock layer properties and shock location is determined. Results vary with one or more than one of viscosity of the fluid, Mach number and angle of incidence changes.