When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring ...

  3. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  4. Edge coloring - Wikipedia

    en.wikipedia.org/wiki/Edge_coloring

    The road coloring problem is the problem of edge-coloring a directed graph with uniform out-degrees, in such a way that the resulting automaton has a synchronizing word. Trahtman (2009) solved the road coloring problem by proving that such a coloring can be found whenever the given graph is strongly connected and aperiodic.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  6. Complete coloring - Wikipedia

    en.wikipedia.org/wiki/Complete_coloring

    Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.

  7. Defective coloring - Wikipedia

    en.wikipedia.org/wiki/Defective_coloring

    In graph theoretic terms, each colour class in a proper vertex coloring forms an independent set, while each colour class in a defective coloring forms a subgraph of degree at most d. [ 12 ] If a graph is ( k , d )-colourable, then it is ( k′ , d′ )-colourable for each pair ( k′ , d′ ) such that k′ ≥ k and d′ ≥ d .

  8. Path coloring - Wikipedia

    en.wikipedia.org/wiki/Path_coloring

    This problem is a special case of a more general class of graph routing problems, known as call scheduling. In both the above problems, the goal is usually to minimise the number of colors used in the coloring. In different variants of path coloring, may be a simple graph, digraph or multigraph.

  9. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.