When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the JouleThomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. List of effects - Wikipedia

    en.wikipedia.org/wiki/List_of_effects

    Jahn–Teller effect (condensed matter physics) (inorganic chemistry) (organometallic chemistry) (quantum chemistry) January effect (behavioral finance) (economics and finance) (market trends) (stock market) Janus effect (effects) (sociology) Johnsen–Rahbek effect (classical mechanics) (electrical engineering) JouleThomson effect ...

  4. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    Often, more than one of the above effects is involved in the operation of a real thermoelectric device. The Seebeck effect, Peltier effect, and Thomson effect can be gathered together in a consistent and rigorous way, described here; this also includes the effects of Joule heating and ordinary heat conduction.

  5. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the JouleThomson effect. For reference, the JouleThomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]

  6. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law. To understand the behaviour of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects;

  7. Isenthalpic process - Wikipedia

    en.wikipedia.org/wiki/Isenthalpic_process

    If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. [2]Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. [3]

  8. Thermionic emission - Wikipedia

    en.wikipedia.org/wiki/Thermionic_emission

    For example, excited Cesium (Cs) vapors in thermionic converters form clusters of Cs-Rydberg matter which yield a decrease of collector emitting work function from 1.5 eV to 1.0–0.7 eV. Due to long-lived nature of Rydberg matter this low work function remains low which essentially increases the low-temperature converter's efficiency. [37]

  9. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full, it follows the rules for capitalisation of a common noun; i.e., joule becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.