Search results
Results From The WOW.Com Content Network
Monthly estimated potential evapotranspiration and measured pan evaporation for two locations in Hawaii, Hilo and Pahala. Potential evapotranspiration is usually measured indirectly, from other climatic factors, but also depends on the surface type, such as free water (for lakes and oceans), the soil type for bare soil, and also the density and diversity of vegetation.
Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage. If the actual evapotranspiration is considered the net result of atmospheric demand for moisture from a surface and the ability of the surface to supply moisture, then PET is a measure of the demand side (also called evaporative demand).
In these conditions, the actual evapotranspiration would match the Penman rate of reference evapotranspiration. However, observations revealed that actual evaporation was 1.26 times greater than reference evaporation.
Specifically the Penman–Monteith equation refines weather based potential evapotranspiration (PET) estimates of vegetated land areas. [1] It is widely regarded as one of the most accurate models, in terms of estimates. [citation needed] The original equation was developed by Howard Penman at the Rothamsted Experimental Station, Harpenden, UK.
In 1948, C. W. Thornthwaite proposed an AI defined as: = where the water deficiency is calculated as the sum of the monthly differences between precipitation and potential evapotranspiration for those months when the normal precipitation is less than the normal evapotranspiration; and where stands for the sum of monthly values of potential evapotranspiration for the deficient months (after ...
Inputs to SPEI datasets can include high-resolution potential evapotranspiration (PET) from the Global Land Evaporation Amsterdam Model (GLEAM) and hourly Potential Evapotranspiration (hPET). GLEAM is a set of algorithms designed to calculate actual evaporation, PET, evaporative stress, and root-zone soil moisture. [5]
After being criticized for making climatic classification complex, Thornthwaite switched vegetation with the concept of potential evapotranspiration (PET), which represents both precipitation effectiveness and thermal efficiency. [5] Estimated PET can be calculated using Thornthwaite's own 1948 equation. [2]
Potential evapotranspiration (PET), is the evaporation and transpiration that potentially could occur if a field of the crop had an ideal unlimited water supply. RET is the reference ET often denoted as ET 0 .