When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠.

  3. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.

  4. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    Obviously, the best you can do is to gain + + dollars. This is exactly what the upper bound of the rearrangement inequality ( 1 ) says for the sequences 3 < 5 < 7 {\displaystyle 3<5<7} and 10 < 20 < 100. {\displaystyle 10<20<100.}

  5. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Similarly, when you turn a 3 into a 2 in the following decimal position, you are turning 30×10 n into 2×10 n, which is the same as subtracting 30×10 n −28×10 n, and this is again subtracting a multiple of 7. The same reason applies for all the remaining conversions: 20×10 n − 6×10 n =14×10 n; 60×10 n − 4×10 n =56×10 n; 40×10 n ...

  6. Nesbitt's inequality - Wikipedia

    en.wikipedia.org/wiki/Nesbitt's_inequality

    There is no corresponding upper bound as any of the 3 fractions in the inequality can be made arbitrarily large. It is the three-variable case of the rather more difficult Shapiro inequality, and was published at least 50 years earlier.

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

  9. Titu's lemma - Wikipedia

    en.wikipedia.org/wiki/Titu's_Lemma

    In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...