When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Microsoft Math Solver - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Math_Solver

    Microsoft Mathematics 4.0 (removed): The first freeware version, released in 32-bit and 64-bit editions in January 2011; [8] features a ribbon GUI Microsoft Math for Windows Phone (removed): A branded mobile application for Windows Phone released in 2015 specifically for South African and Tanzanian students; also known as Nokia Mobile ...

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The pattern shown by 8 and 16 holds [6] for higher powers 2 k, k > 2: {,}, is the 2-torsion subgroup, so (/) cannot be cyclic, and the powers of 3 are a cyclic subgroup of order 2 k − 2, so: ( Z / 2 k Z ) × ≅ C 2 × C 2 k − 2 . {\displaystyle (\mathbb {Z} /2^{k}\mathbb {Z} )^{\times }\cong \mathrm {C} _{2}\times \mathrm {C} _{2^{k-2}}.}

  4. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996, §5.2) call Q 1 R 1 the thin QR factorization of A; Trefethen and Bau call this the reduced QR factorization. [1]

  5. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n ≥ 2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  6. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots; If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2p + 1 would be congruent to 3 mod 3, impossible for a prime number. [16]

  7. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    Example: 100P can be written as 2(2[P + 2(2[2(P + 2P)])]) and thus requires six point double operations and two point addition operations. 100P would be equal to f(P, 100) . This algorithm requires log 2 ( d ) iterations of point doubling and addition to compute the full point multiplication.

  8. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    otherwise the numerator k(n − 1)(n − 2)⋯(n − p + 1) has to be divisible by n = k×p, this can only be the case when (n − 1)(n − 2)⋯(n − p + 1) is divisible by p. But n is divisible by p , so p does not divide n − 1, n − 2, …, n − p + 1 and because p is prime, we know that p does not divide ( n − 1)( n − 2)⋯( n − ...

  9. Duopyramid - Wikipedia

    en.wikipedia.org/wiki/Duopyramid

    A p-q duopyramid or p-q fusil has Coxeter group symmetry [p,2,q], order 4pq. When p and q are identical, the symmetry in Coxeter notation is doubled as [[p,2,p]] or [2p,2 +,2q], order 8p 2. Edges exist on all pairs of vertices between the p-gon and q-gon. The 1-skeleton of a p-q duopyramid represents edges of each p and q polygon and pq ...