Search results
Results From The WOW.Com Content Network
The theoretical fractal dimension for this fractal is 5/3 ≈ 1.67; its empirical fractal dimension from box counting analysis is ±1% [8] using fractal analysis software. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.
Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake Brahmagupta made in his book Ganita Sara Samgraha : "A number remains unchanged when divided by zero."
Heighway dragon curve. A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems.The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.
The Sierpinski triangle is a union of three copies of itself, each copy shrunk by a factor of 1/2; this yields a Hausdorff dimension of ln(3)/ln(2) ≈ 1.58. [1] These Hausdorff dimensions are related to the "critical exponent" of the Master theorem for solving recurrence relations in the analysis of algorithms .
[2] [30] Although it resembles an earlier candidate for minimum ropelength, constructed from four circular arcs of radius two, [31] it is slightly modified from that shape, and is composed from 42 smooth pieces defined by elliptic integrals, making it shorter by a fraction of a percent than the piecewise-circular realization.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
While the circle has a relatively low maximum packing density, it does not have the lowest possible, even among centrally-symmetric convex shapes: the smoothed octagon has a packing density of about 0.902414, the smallest known for centrally-symmetric convex shapes and conjectured to be the smallest possible. [3] (Packing densities of concave ...
The technical term for this transformation is a dilatation (also known as dilation). Dilatations can form part of a larger conformal symmetry . In mathematics, scale invariance usually refers to an invariance of individual functions or curves .