When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    Further if the above statement for algorithm is true for every concept and for every distribution over , and for all <, < then is (efficiently) PAC learnable (or distribution-free PAC learnable). We can also say that A {\displaystyle A} is a PAC learning algorithm for C {\displaystyle C} .

  3. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  4. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...

  5. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  7. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    There are many algorithms for denoising if the noise is stationary. For example, the Wiener filter is suitable for additive Gaussian noise. However, if the noise is non-stationary, the classical denoising algorithms usually have poor performance because the statistical information of the non-stationary noise is difficult to estimate.

  8. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  9. Sparse PCA - Wikipedia

    en.wikipedia.org/wiki/Sparse_PCA

    Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.