Search results
Results From The WOW.Com Content Network
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1] Colloquially, it may instead refer to kinetic persistence , the shelf-life of a metastable substance or system; that is, the timescale over which it begins to degrade.
The kinetic isotope effect is the difference in the rate of a chemical reaction when an atom in one of the reactants is replaced by one of its isotopes. Chemical kinetics provides information on residence time and heat transfer in a chemical reactor in chemical engineering and the molar mass distribution in polymer chemistry.
These experiments enable one to artificially "enter" the reaction at any point, as the initial concentrations of one experiment (the intercepting reaction) are chosen to map directly onto the anticipated concentrations at some intermediate time, t, in another (the parent reaction). One would expect the reaction progress, described by the rate ...
Language links are at the top of the page across from the title.
In such a case A is the kinetic product and is favoured under kinetic control and B is the thermodynamic product and is favoured under thermodynamic control. [ 1 ] [ 2 ] [ 3 ] The conditions of the reaction, such as temperature, pressure, or solvent, affect which reaction pathway may be favored: either the kinetically controlled or the ...
Non-equilibrium thermodynamics is a branch of physics that studies the dynamics of statistical ensembles of molecules via unstable states. Being "stuck" in a thermodynamic trough without being at the lowest energy state is known as having kinetic stability or being kinetically persistent.
The kinetic process of destabilisation can be rather long (up to several months or even years for some products) and it is often required for the formulator to use further accelerating methods in order to reach reasonable development time for new product design.
The diagram sketches how proteins fold into their native structures by minimizing their free energy. The folding funnel hypothesis is a specific version of the energy landscape theory of protein folding, which assumes that a protein's native state corresponds to its free energy minimum under the solution conditions usually encountered in cells.