Search results
Results From The WOW.Com Content Network
Three antiquarks of different anticolors, giving an antibaryon with baryon number −1. The baryon number was defined long before the quark model was established, so rather than changing the definitions, particle physicists simply gave quarks one third the baryon number. Nowadays it might be more accurate to speak of the conservation of quark ...
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
Baryons and mesons are both hadrons, which are particles composed solely of quarks or both quarks and antiquarks. The term baryon is derived from the Greek "βαρύς" ( barys ), meaning "heavy", because, at the time of their naming, it was believed that baryons were characterized by having greater masses than other particles that were classed ...
Mesons are made of a valence quark–antiquark pair (thus have a baryon number of 0), while baryons are made of three quarks (thus have a baryon number of 1). This article discusses the quark model for the up, down, and strange flavors of quark (which form an approximate flavor SU(3) symmetry). There are generalizations to larger number of flavors.
Because quarks have a spin 1 / 2 , the difference in quark number between mesons and baryons results in conventional two-quark mesons being bosons, whereas baryons are fermions. Each type of meson has a corresponding antiparticle (antimeson) in which quarks are replaced by their corresponding antiquarks and vice versa.
QCD predicts that quarks and antiquarks bind into particles called mesons. Another type of hadron is called a baryon, that is made of three quarks. There is good experimental evidence for both mesons and baryons. Potentially QCD also has bound states of just gluons called glueballs.
These include glueballs and hybrid mesons (mesons bound by excited gluons). Because mesons have an even number of quarks, they are also all bosons, with integer spin, i.e., 0, +1, or −1. They have baryon number B = 1 / 3 − 1 / 3 = 0 . Examples of mesons commonly produced in particle physics experiments include pions and kaons.
The most common baryons are the proton and the neutron, the building blocks of the atomic nucleus. [12] A great number of hadrons are known (see list of baryons and list of mesons), most of them differentiated by their quark content and the properties