Search results
Results From The WOW.Com Content Network
We shall do so by considering the ordinal positions occupied by all the fractions / and / when they are jointly listed in nondecreasing order for positive integers j and k. To see that no two of the numbers can occupy the same position (as a single number), suppose to the contrary that j / r = k / s {\displaystyle j/r=k/s} for some j and k .
The conjecture in Quillen's original form states that if A is a finitely-generated algebra over the integers and l is prime, then there is a spectral sequence analogous to the Atiyah–Hirzebruch spectral sequence, starting at
One basic point of the derived category of motives is that the four types of motivic homology and motivic cohomology all arise as sets of morphisms in this category. To describe this, first note that there are Tate motives R(j) in DM(k; R) for all integers j, such that the motive of projective space is a direct sum of Tate motives:
In mathematics, an addition chain for computing a positive integer n can be given by a sequence of natural numbers starting with 1 and ending with n, such that each number in the sequence is the sum of two previous numbers.
Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...
The addition operations on integers and modular integers, used to define the cyclic groups, are the addition operations of commutative rings, also denoted Z and Z/nZ or Z/(n). If p is a prime , then Z / p Z is a finite field , and is usually denoted F p or GF( p ) for Galois field.
The integers, with the operation of multiplication instead of addition, (,) do not form a group. The associativity and identity axioms are satisfied, but inverses do not exist: for example, a = 2 {\displaystyle a=2} is an integer, but the only solution to the equation a ⋅ b = 1 {\displaystyle a\cdot b=1} in this case is b = 1 2 ...
According to an anecdote of uncertain reliability, [1] in primary school Carl Friedrich Gauss reinvented the formula (+) for summing the integers from 1 through , for the case =, by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. Regardless of the truth of this story, Gauss ...