When.com Web Search

  1. Ads

    related to: how do you solve integers

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p; thus a multiplicative inverse exists for all a that is not congruent to zero ...

  4. Integer programming - Wikipedia

    en.wikipedia.org/wiki/Integer_programming

    The zero–one programming technique has been successfully applied to solve a project selection problem in which projects are mutually exclusive and/or technologically interdependent. It is used in a special case of integer programming, in which all the decision variables are integers. Variable can assume only the values zero or one.

  5. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    The integers arranged on a number line. An integer is the number zero , a positive natural number (1, 2, 3, . . .), or the negation of a positive natural number (−1, −2, −3, . . .). [1] The negations or additive inverses of the positive natural numbers are referred to as negative integers. [2]

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    The Conjecture is that this is true for all natural numbers (positive integers from 1 through infinity). ... but hard to solve. All you need to recall is the definition of rational numbers.

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added. A closely related fact is that the Collatz map extends to the ring of 2-adic integers, which contains the ring of rationals with odd denominators as a subring.