When.com Web Search

  1. Ads

    related to: surface integral cross formula examples problems worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    Assume that f is a scalar, vector, or tensor field defined on a surface S. To find an explicit formula for the surface integral of f over S, we need to parameterize S by defining a system of curvilinear coordinates on S, like the latitude and longitude on a sphere. Let such a parameterization be r(s, t), where (s, t) varies in some region T in ...

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region enclosed by the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks ...

  6. Vector area - Wikipedia

    en.wikipedia.org/wiki/Vector_area

    Area vectors are used when calculating surface integrals, such as when determining the flux of a vector field through a surface. The flux is given by the integral of the dot product of the field and the (infinitesimal) area vector. When the field is constant over the surface the integral simplifies to the dot product of the field and the vector ...

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To accommodate for the change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative factor within the integral.

  8. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.

  9. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...